On finite simple groups with large extraspecial subgroups I
نویسندگان
چکیده
منابع مشابه
ON p-NILPOTENCY OF FINITE GROUPS WITH SS-NORMAL SUBGROUPS
Abstract. A subgroup H of a group G is said to be SS-embedded in G if there exists a normal subgroup T of G such that HT is subnormal in G and H T H sG , where H sG is the maximal s- permutable subgroup of G contained in H. We say that a subgroup H is an SS-normal subgroup in G if there exists a normal subgroup T of G such that G = HT and H T H SS , where H SS is an SS-embedded subgroup of ...
متن کاملLarge Abelian Subgroups of Finite p-Groups
It would be interesting to extend this result by allowing B to have nilpotence class 2 instead of necessarily being abelian. This cannot be done if p = 2 (Example 4.2), but perhaps it is possible for p odd. (It was done by the author ([Gor, p.274]; [HB, III, p.21]) for the special case in which p is odd and [B,B] ≤ A.) However, there is an application of Thompson’s Replacement Theorem that can ...
متن کاملFinite groups with $X$-quasipermutable subgroups of prime power order
Let $H$, $L$ and $X$ be subgroups of a finite group$G$. Then $H$ is said to be $X$-permutable with $L$ if for some$xin X$ we have $AL^{x}=L^{x}A$. We say that $H$ is emph{$X$-quasipermutable } (emph{$X_{S}$-quasipermutable}, respectively) in $G$ provided $G$ has a subgroup$B$ such that $G=N_{G}(H)B$ and $H$ $X$-permutes with $B$ and with all subgroups (with all Sylowsubgroups, respectively) $...
متن کاملOn $Phi$-$tau$-quasinormal subgroups of finite groups
Let $tau$ be a subgroup functor and $H$ a $p$-subgroup of a finite group $G$. Let $bar{G}=G/H_{G}$ and $bar{H}=H/H_{G}$. We say that $H$ is $Phi$-$tau$-quasinormal in $G$ if for some $S$-quasinormal subgroup $bar{T}$ of $bar{G}$ and some $tau$-subgroup $bar{S}$ of $bar{G}$ contained in $bar{H}$, $bar{H}bar{T}$ is $S$-quasinormal in $bar{G}$ and $bar{H}capbar{T}leq bar{S}Phi(bar{H})$. I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1978
ISSN: 0021-8693
DOI: 10.1016/0021-8693(78)90291-0